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characterization is procedure to con1pute conclu-
sions is also given. Then. we show hovv nonmonotonic reasoning and other patterns 
of ampliatiw inference like abduction ancl induction can be adequately recast within 
t he general pattern of reasoning from contradiction. Vve discuss some applications, in 
particular, a brief formalization of scientific research programmes. 

I\Ianagement of uncertain or incomplere information may lead to contradictory statements, orig
inated in erroneous knowledge or e\·idence. or contextually inadequate defeasibl8 rules. Thus. 
nontriYial reasoning in the presence of inconsistency is a recunent need in intelligent systerns. In 
this cases we do not expect that the reasoning collapse, since it woulcl imply that a 
wrong data may an entire knowledge base. A rational behavior, for example. is to isolate 
the connadictorv knowledge from the rest of the knowledge base by means of a paraconsistent 
r13. 1-1. . Another approach is to reject one or more knowledge pieces means of an 
consideration (f.e .. plausibilitv), so that consistency is reinstated [20, 21]. Hm;vever, tl:m kind of 
reasoning has not been considered as a solution to ampliative inference patterns, lHce nonmonotonic 
reasoning. induction or abduction. 



In this work we propose an epistemic architecture that allows a full representation of all these 
ampliative inference patterns in an integrated framework. We start from considering an epistemic 
structure thatincorporates knowledge of different kinds: a context consisting on a set of universally 
valid sentences and a set of evidence, a set of defeasible rules or conditionals, and a set of tentative 
inforination (reports, measurements, ancl conjectures). Within the structure, an epistemic impor
tance or plausibility relation assigns priorities to every knowledge piece. Then, conclusions inferrecl 
by means of an ampliative inference rule can be represented within the epistemic structure with 
its corresponding epistemic importance. The set of accepted conclusions may be found by means 
of an exductive inference process. Every maximally plausible consistent subset of the epistemic 
structure. is a possible interpretation of the incomplete knowleclge of the context that the sistem 
has. Then, the semantics of the system is to regard as definite the conclusions that pertain to 
the intersection of the maximally plausible consistent subsets. A computationally tractable proof 
proceclure is also presented. 

2 Ampliative Inference 

Inference may be regarclecl as an epistemic support relation between a set of sentences called 
antecedent (every member of this set being a premise) and a sentence called consequent. An inference 
is ampliative if the informational content of the consequent exceeds the informational cóntent 
of the antecedent [18]. It has been for very long exemplified how a rational reasoner needs to 
infer knowleclge that "goes beyond" mere deduction, the most famous example being to infer that 
normally bircls fly. Ampliative inference, however, cannot be sound, since we can fincl cases where 
the antecedent is true and the consequent not, as is inferring that a penguin flies. In this section 
we will introduce the most usual patterns of ampliative inference in artificial intelligence, namely 
nonmonotonic reasoning, plausible reasoning, incluction ancl abcluction. 

2.1 Nonmonotonic Reasoning 

Nonmonotonic reasoning refers toa kind of non-demonstrative reasoning that uses defeasible condi
tionals as premises of an ampliative inference pattern analogous to modus ponens. Formal styles of 
formalizing nonmonotonic reasoning range from material implications in a modallanguage [10, 11], 
to inference rules in the metalanguage [19], or as metalinguistic conditional operators [12], or as 
minimizing abnormality relations in incomplete theories [8], or as metalinguistic relation among set 
of literals [7]. In this work we adopt this last style of formalization, being the expression a>- (3 
a representation of a defeasible conditional or prima facie implication for representing that reasons 
for accepting a provide reasons for tentatively accepting (3, and both a and (3 are sets of open 
literals in a deductively closed first order language. 

a(t) 
a(X) >- b(X) 
b(t), 

(1) 

that is, in words, if a( t) is a known or believed fact, and if among our accepted defeasible conditionals 
we have a(X) >- b(X), then nonmonotonically infer b(t). We can also establish a defeasible 
entailment relation r- extencling the existing deductive entailment relation f- in a way such that 
defeasible conditionals are used as material implication in the modus ponens inference rule. 
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2.2 Induction 

lnduction is aimed to find a general rule from a set of particular cases, instances or examples [1]. 
St~'les of formalizing induction are less diverse. since there is agreement in that incluction- infers an 
abstraction. in a wa:v such that every particular case can be regardecl as an instance. The most 
fundamental inference pattern for induction is to search in a systematic way. A deciclable inductive 
inference rule in a first order language wit h a denumerable set of variables is 

a(t1), a(t2), · · ·, a(tn) 
b(i1), b(i2). · · ·, b(tn), · · ·, b(fn+m) 
a(X) >- b(X), 

(2) 

that is. if in our knowledge base, every time that we find a(t), we can also .find b(t), then infer the 
defeasible conditional a(X) >- b(X). 

2.3 Abduction 

Accorcling to philosophers, abduction is a reasoning process that provides the best fit or explanation 
for sorne unexpectecl data, that is, it goes from observations to explanations. Then, an abcluctive 
inference produce sentences that, added to the theory T, implv deductively or nonmonotonically the 
surprising observations. Obviously there ma\· be many suitable explanations for a given fact, ancl 
t herefore t he re mus t. exist criteria for assessing the "best" explanation, like coherence or simplicity 
(see for example the cliscussion in [22] and the bibliography citecl therein). Abduction is of central 
importance in some Al m·eas, as in expert systems, diagnosis, and causal reasoning [5, 15]. A 
suitable schema for representing an inductive inference is the following. 

b(t) 

T ~ b(t) 
Tu a(X)f-v b(X) 
n ( t). 

(3) 

that is. if the surprising fact b(t) is observed, being b unpredicted in our theory T, and if a(X) 
added to the theory would entail b( X), then infer a( t). 

2.4 Plausible Reasoning 

Plausible reasoning is a means to extencl t he clomain of a theory incorporating information provided 
b~· potentiall~· fallible sources [20, 21]. Among these sources we may consider reports from other 
agents. measurements. observations, guesses or conjectures. Following epistemological criteria, 
these reports must refer to observable facts, i.e., grounclliterals, ancl a formal means to represent 
them. is to relate the informecl literals to t he source of information. Then, if the information 
source i provicles the ground literal a(t), this may be representecl as < a(t) >i· This information is 
considerecl as a prima facie truth, and so an inference pattern for representing plausible reasoning 
lS 

< a(t) >i 
a(t), 

that is. if information source i provides the report that a(t), then infer a(t). 

(4) 
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3 An Epistemic Architecture 

In this sectiOJ;l we will present an epistemic architecture, established in terms of a specific reasoning 
model. Knowledge is represented in a first arder deductively closed language. We will refer to sets 
of general (nonground) sentences with calligraphic uppercase (as K), to séts of particular sentences 
with italicized uppercase (as E), and to sentences with italicized lowercase (as a(X)). The language 
is extended to allow the representation of tentative knowledge in the form of defeasible conditionals 
a(X) >- b(X) an of plausible literals < l >i. Then, the linguistic classes in which knowledge is 
represented are 

• K, mathematical and logical truths and definitions, which are deductively valid, represented 
as a set of universally closed sentences; 

• g, defeasible knowledge represented as a set of defeasible conditionals that arase as an ab
straction of a reasonably large set of examples; 

• E, evidence, is the set of available particular knowledge, which also is deductively valid, and 
is represented as a set of ground literals; 

• P, plausible information provided by information sources, represented as plausible ground 
literals. 

DEFINITION 1 Given a context < K, E >, (mathematical and logical knowledge and evidence), 
an Epistemic Structure t:"-,E is a knowledge structme t:"-,E =< 9, P >, where g is a finite set of 
defeasible conditionals a>- (3, and Pis a. finite set of plausible litera.ls < l >i· Whenever context 
rema.ins inambiguously denoted, we will refer to an epistemic structure simply as [. O 

DEFINITION 2 Given a.n epistemic structure t:"-,E in context < K, E >, a Plausible Theory T is 
a. pa.ir T =< [JC E, -< >, where -< is a partial arder on the elements of [, refeiTed to asan Epistemic 
Preference Relation or more simply, plausibility. We may consider that the deductively valid 
knowledge of the context is a.n element [ T in the plausible themy, su eh that Va E [.a-<[ T, a11d that 
any otheT knowledge piece, without epistemic impmtance, is another element [ ..l of the plausible 
themy, such that '<:1(3 E[.[ ..l -</3. Then, in a plausible theoTy T, its epistemic structure [ is a lattice 
under the epistemic impm-tance relation -<. D 

DEFINITION 3 Given a plausible theory T and a subtheory T ~ T, the Epistemic lmportance 
of T given T, denoted as T-<, is defined as the set of greatest lower bounds of the elements of T 
undeT the Telation -< of epistemic importance: T-< = {a E TI !J/3 E T.f]-<a }. Given two subtheoTies 
T1 y T2, we will say that T1 is epistemically mme important than T2 (denoted as T2-<T1) ifff evmy 
statement in T1 is at least as important in T as every statement in T2, but there exists at least one 
statemei1t in T1 that is strictly more important than every statement in T2. D 

Now, given a plausible theory T, which is the consistent subset of most epistemic importance, or 
in other words, the most preferred subtheory? Since our epistemic importance relation is a partial 
arder, there can be two or more maximally plausible consistent subtheores (wrt the context), each 
unrelated under epistemic importance. The semantics we propase here is to consider the intersection 
of every such subtheories as indisputed knowledge. 
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4 Let be an entailment relation tha r the 
using mewbers of an epistemic structures as pre111ises m particular. members oF 

iwplications and wembe1·s of P as literals. Given a 
< 1(, E > and a linear extension l of -< 1 , a 
(1\IPCS) of T (vv-rt context < JC. E>) is a subset E1 of the epistemic stnrctme E that satisfies 

2. (E 7 u /C u P) )'v _L, 

3. Va E E1.V!3 E (E/El).3--<.a, 

4. j!JElE1 e E1 <:;;;E. (E 1 u /C) L 

Let M ue thc intersection of all MPCS of a given 
to mAterial implications find tlle plausible to 

T¡._ of T (wrt the context < JC E > and the epistemic 
-<). The skeptical subtheory of a is within . first order language. The set e 

conclusions of a closure of the 
together \\·itll the context. i.e., e= {K u E u T.t} ). o 

A proof procedure to determine if a sentence is among the set of conclusions of a 
theor.Y is the following: 

DEFINITION 5 Given a plausible theory T =< 
nor lC U E!- 'q. Then we define. 

. --<. >anda qnery q snch that neither lCUE !-

) 

o 

q is supported if there exists a S11pport set Es <:;;;E. such tlwt Es U K U E~ q. 

q is dou if there exists a doubt set E r1 <:;;; E. su eh that 

q is accepted either iF it is suppmted but not 
set Es su eh that the epistemic ünportfmce of Es 
set . tlw.t is, E. d -<.Es. 

or if there exists a 
is higher than those of any do u Ut 

THEOREI-.1 1 Given a pla11sible theory T =< E. --<. >, then q is accepted with snpport su eh 
that 0 e Es <:;;; E, if and only if q is in the set C of conclusions of the themy. O 

The Jescribed in the Jefinition 5, inspired in skeptical reasoning 1s 
computationally tractable, since it is based in recursive bacbvard chaíning. Then, a PROLOG 

implementation is straightforward. 

4 A-'-rnpliative inference the epistemic architecture 

\Ve will present in this section sorne examples of amplia ti ve inference as they are wir hia 
the epistemic architecture presented in the previous section. To simplify notation in these 
we will adopt Geffner's notation for defeasible rules: every conditional in 9 is indexed \vi1~h a number 
that represents it, in a way such that the conditional a---;+ 3 may be as Oi. 

1 A linear extenE.ion of a partial order r is a linear order relation /, O\"er the same elements of r th,,t contain.~ r 



In the definition 4 of 
definition 5 
plausible inference 

consequence of a 
query, 

4. 

and in its 
implicit the 

architecture 
among defeasible conditionals. 

shown that, or a preference relation among the set of conclusions 
coincides with the nonmonotonic logic of McDermott and [11]. 
If we were t.o sets of conclusions from the deductive closure of every with 
the context, the result would be a set of sets conclusions that are idenhcal 
to mulhple extensions of Reiter's default reasoning [19]. Huwever, the relation breaks 
the of credulous vs. 

1 H! OUl' vve ha ve .g 
{o 7 b, b -;+ e, a :¡-+ d} and --< = In this case we can shovv frow tl1e definitions 
tlHt d is among the conclusions of tlle 
stmnger than the don bt set , o2}. O 

} 

It is important to remark that in the neither b nor <b are 
theory, since the support set for b, 61, is not comparable to its doubt 

to and is 

of the plausible 
} the saine 

goes for <b. If in--< we add 62-<81, then b would also be conclusion. the other hand, if 81 --< 
was added, then 'b would be conclusion. This behavior is not observed in other based 
default reasoning like circumscription [9, 17]. At the same it is easy to 
show that this reasoning model avoids deadlocks and cascaded ambiguity that are common 
in inheritance networks. 

EXAMPLE 2 Cascaded et. al., 1987) [4}. Knowledge abont political atti-
tndes can be represented in the follovving statelllents: 

Repu/yJicans are not paciflsts r 7 'P 
Qua.kers are paciflsts e -;+ p 
Republicans are football fans r 3> J5c 
FootiJall fans aTe belicists fJ 7 b 
Paciflsts are not belicists p --s+ <b 
Nixon is Repnblican 
Nixon is Quaker 

r 

q 

V\,'}wt can be concluded abont Nixon 's belicism? In particulm·, we llave the following reasoning 
lines: { 82, 65} U lC U E~ 'b, { 01, 85} U JC U E~ b, and { 03, o4} U JC U E~ b. The accepted conchzsion 
will depend, then. on the preference among the sets { {62, o5}, {61, o5}, {83, o4} }. O 

4.2 Inductive reasonmg 

On producing a new defeasible conditional within our epistemic architecture, we are confronted 
with the problem of assigning it a suitable epistemic importance. This was already discussed in 
Philosophy of Science as the "problem of induction" (see [16], for example) in search of statistical 
criteria for the confirmation of scientific theories. These criteria were found inadequate for confir
mation [6], but we claim that they can be applied to the assessment of epistemic importance. For 
instance, in the inductive inference schema 2, the number n of regular cases remains indeterminate. 
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do not allow an 
the number n. of regular cases can be related to the 
a n meaning the conditional is closer to 

3 ¡,ve consider our knmvledge about nourislunent ha bits and 
om friends. in particular. about vegetarianism v and Buddhisw b: 
E= {b(john), b(ana). v(john). v(o ., v(pat)}. 
In addition. we accept thR.t Bnddhism is the majority religion in India: 
9={(i )>--- )}. 
\ií/hat can be conclude about the lWurishment halJits of om nell' friend 
indHction in E. we cRn pose the defeasible conditional b(X) >--- v(X), which can be 

>--- to conclnde v . D 

4.3 reasonn1g 

of 

m induction, m abduction we do not mfer a conclusion. but instead vve infer the necessar\ 
base for arriving to an obserYed conclusion. . we also t he 

was also studied in 

be chosen. 
can 

Boutilier and Becher 

son eATns a -vva.g~e 

a nonnal stude11t Riso is 

.S 

IS. wages ave/ taxes ;:u·e more "nonnal" facts a/;out working 
we regare/ y 05 as 11101 e importxnt than that fellcnvs 

are stnclents and tlwt eEnn a wage. than that students work. we regare/ o4 as of more lm-

tlwn ó1. that is. it is more "normal" that 1Norking people do not than that students 
work.-< = {64 .c54--<ó6.ól-<ó2,ó1--<o3,o4--<ol}. 

In this state of aflA.irs. \'vhat can we say about john. about ·whom we know that he pays taxes7 

abductive inference. frow t(john) 1ve can conclucle that e(john) without and 
since , YFe can con elude a.lso -,s(john). 

\Nhat about rmn .. ahout n·hom we know tha.t earns a wage 7 

In w ( n nn), \Fe can fin el inference two 
a.nd f(a.na.). Follmving the first justification, we fine/ also that t(ana.) ancl -,s(ana) and therefore 
-,¡ (o na), that is. a na earns a n·ages becrmse she is ewployecl, ancl therefore she pa,ys taxes, does 
not is not fellmL Follawing the second justification n·e fin el that s ( a.na.) and a.lso that 
w(a.no.) and ), that is, ano is a felloYv and therefore she studies, but also ano is 
pa.ys taxes. Since our epistemic structure is skeptical, "·e conclucle that an abductive 1s 
accepted only if it helongs to eyery possible j¡¡stification, being incletenninate if there is no comwcm 
justiiication. In the case of ano, the system accepts that she is employed as a justification of her 
wages, and therefore preclicts that she pays taxes, a fact to he corrobomtecl. 

about peter. about whom we know that he earns a wage but does not pay taxes'~ 



In this case, the explanations for peter 's wages me identical to a na 's, but the additional fact that 
peter does not pay taxes "blocks" the Erst explanation, and then the o;1ly consistent explanatión 
is that peter is a fellow that studies but does not wOTk. O 

5 Applications in Scientific Reasoning 

The relations between KR&R and Philosophy of Science are subtle and have not been fully uncov
ered. Here we propase an application of our episternic architecture to the forrnalization of scientific 
reasoning. Scientific theories are airned to find the least knowledge set ( or hypotheses) H that ad
equately represents or covers the evidence set E of a given dornain. Early atternpts in the Vienna 
Circle proposed a scherna E f- H in which the theory follows frorn the evidence. It was Hernpel the 
first to show that the hypotheses, as underlying explanations for the evidence, should entail the 
observations, i.e., H f- E (hypothetico-deductive paradigrn) [3]. Popper then showed that scientific 
theories cannot be shown to be true, confirrnations notwithstanding, but a single counterexarnple 
rnay render them false [16]. A further contribution was made by Lakatos, who analyzed the most 
relevant historical cases, and showed that underlying inference procedures in scientific reasoning 
are of a more pragmatic nature, and tend to "protect" theories from reputations by means of a 
"belt" of ancillary hypotheses [6]. We will elaborate on Lakatosian ideas later. 

EXAMPLE 5 Our knowledge about gravitation is reduced to: 
H1: There is a force that attmcts massive objets to earth. 

V X. o( X)=? a( earth, X) 
e1: This stone is attracted to the earth. 

a( earth, stone) 
e2: This zeppelin is not attntcted to the emth. 

-,a,( ea.rth, zepp) 

In a Hempelian account, we have H1 f- e1, but H1 lf e2. This should render false H 1 . In this 
work we propase to regard scientiE.c knowledge as defeasible, and then our account for reasoning 
with plausible theories should be adequate in scientiE.c reasoning. 

H1 : Massive objets tend to fall to em"th. 
o( X) >- a(ea.rth, X) 

e1: This stone is attmcted to the earth. 
a( ea.rth, stone) 

e2: This zeppelin is not attracted to the earth. 
-.a.( ea.rth, zepp) 

Here e1 is explained, but e2 is an exception of unknown natme. Further experi-
wents tend to conE.rm Archimedes and Torricelli 's hypothesis of an atrnospheric inB.uence. 

H1: Objects heavier than air fall to earth. 
o(X) 1\ h(X) >- a.(ea.rth, X) 

H2: Objects lighter than air do not fall to earth. 
o(X) 1\ -,p(X) >- -.a(ea.rth, X) 
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c1 : stone is hem·ier than 811'. 

stone) 
c2 : This zeppelin is lighter than air. 

zepp) 
e1 : Tllis stone is attracted to the earth. 

earth. si·one) 
e2: This zeppelin is not attracted to the eArth. 

•n.( 
e 

This example shmvs an underlying common drive in most 
to avoid the relinquishment of an othervvise fruitful when confronted 
at whenever there are no other competing theories that seems to do 
not be a method in scientific be 
researchers in a 

research programmes to refer to such that 
contribution to the Lakatosian is to consider that research programmes emerge 
from different importance to the same that reseaxch 
programmf~S can be regarcled as plausible t heories in which the structun:' is common. b;_Jt 
the episternic importance relation is different. 

EXAMPLE 6 Let a scientific theor"\- be T = {a, a >---- b}. This theory predicts b. ~~~hat 

if there is evidence tha t •b is the case? In this situation we can consider se,,eral cases. 

I11 the first. it is created A theory T1 = •b,a >---- b}, n'here tacitly {a-.<-,b,a-< >---- b)} 
Following T1, the cnlprit fm defeat is a, Yvhich is not adeqnately justified, but a>---- b can be 
preserved, and. even more. creMes the aiJdHctive p1·esupposition that -,a shonld be the case. 

Ju the second case. it is created a theory T 2 = •b, o >---- b}, with a tacit 
{a-<•b, >---- b)-<n.}. Following T2, the culpót is a>---- b which is rendered false 
lmt the datnw a can be presen·ed. 

There can be othe1 cases. H'hich can be the most interesting, where auxiliary are 
genera.ted to pwtect the original themy fwm defeat, evolving to a theory T 3 = {a. c. a >----
·whcre { (a, e) >---- •b}. Follm1·ing T 3, the m le o >---- b is incomplete, Rnd nmst be specialized to con
si deL fmther cases, fm example (a, e) >-- •b completes the nzle when the particular cü-cuwstance 
e is observed. O 

6 USIOH 

V/e proposed an epistemic architecture t hat allows a full representation of ampliative inference 
patte1·ns in an integrated frarnework An epistemic structure incorporates knowledge of 
kinds: a context. a set of defeasible rules or conditionals, and a set of tentative information. An 
epistemic importance relation assigns priorities to every knowledge piece. Conclusions infened 

means of an ampliative inference rule can be representecl ,,·ithin the epistemic structure '-'Vith 

its corresponding epistemic importance. The sernantics of the system is to regard as 
the conclusions that pertain to t he intersection of the maximally plausible consistent subsets. A 
computationally tractable proof procedure was also presented. Then we showed ho-vv relev;;mt 
patterns of ampliati-:e inference can be represented in our architecture. Finally, some 
in Philosophv of Science were discussed. 
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