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Abstract

Nontrivial reasoning from contradictorv premises is being acknowledged as one of the
most important features in intelligent systems. Expert systems. planners and schedulers,
and diagnosers. are almost alwayvs faced to potentially fallacious information, errors,
uncertainty. and difference of opinions. In these cases, we expect that the reasoning
svstems will not collapse. Instead. the rational expected behavior is to isolate the
source of contradiction.

Several svstems for reasoning from contradictory premises have been advanced, usually
within a context of strict, monotonic knowledge. In this work we investigate how defea-
sible knowledge can be also handled in these svstems. The key idea is to represent pieces
of defeasible knowledge ordered within an epistemic importance relation. A semantic
characterization is provided, and a sound and complete procedure to compute conclu-
sions is also given. Then. we show how nonmonotonic reasoning and other patterns
of ampliative inference like abduction and induction can be adequately recast within
the general pattern of reasoning from contradiction. We discuss some applications, in
particular, a brief formalization of scientific research programmes.

1 Introduction

Management of uncertain or incomplete information may lead to contradictory statements, orig-
inated in erroneous knowledge or evidence, or contextually inadequate defeasible rules. Thus,
nontrivial reasoning in the presence of inconsistency is a recurrent need in intelligent systems. In
this cases we do not expect that the reasoning svstem collapse, since it would imply that a single
wrong data may corrupt an entire knowledge base. ‘A rational behavior, for example, is to isolate
the contradictory knowledge from the rest of the knowledge base by means of a paraconsistent logic
[13. 14. 23]. Another approach is to reject one or more knowledge pieces by means of an extralogical
consideration (f.e.. plausibility), so that consistency is reinstated [20. 21]. However, this kind of
reasoning has not been considered as a solution to ampliative inference patterns, like nonmonotonic

reasoning, induction or abduction.

823




In this work we propose an epistemic architecture that allows a full representation of all these
ampliative inference patterns in an integrated framework. We start from considering an epistemic
structure that incorporates knowledge of different kinds: a context consisting on a set of universally
valid sentences and a set of evidence, a set of defeasible rules or conditionals, and a set of tentative
information (reports, measurements, and conjectures). Within the structure, an epistemic impor-
tance or plausibility relation assigns priorities to every knowledge piece. Then, conclusions inferred
bv means of an ampliative inference rule can be represented within the epistemic structure with
its corresponding epistemic importance. The set of accepted conclusions may be found by means
of an exductive inference process. Every maximally plausible consistent subset of the epistemic
structure, is a possible interpretation of the incomplete knowledge of the context that the sistem
has. Then, the semantics of the system is to regard as definite the conclusions that pertain to
the intersection of the maximally plausible consistent subsets. A computationally tractable proof
procedure is also presented.

2 Ampliative Inference

Inference may be regarded as an epistemic support relation between a set of sentences called
antecedent (every member of this set being a premise) and a sentence called consequent. An inference
is ampliative if the informational content of the consequent exceeds the informational content
of the antecedent [18]. It has been for very long exemplified how a rational reasoner needs to
infer knowledge that “goes beyond” mere deduction, the most famous example being to infer that
normally birds fly. Ampliative inference, however, cannot be sound, since we can find cases where
the antecedent is true and the consequent not, as is inferring that a penguin flies. In this section
we will introduce the most usual patterns of ampliative inference in artificial intelligence, namely
nonmonotonic reasoning, plausible reasoning, induction and abduction.

2.1 Nonmonotonic Reasoning

Nonmonotonic reasoning refers to a kind of non-demonstrative reasoning that uses defeasible condi-
tionals as premises of an ampliative inference pattern analogous to modus ponens. Formal styles of
formalizing nonmonotonic reasoning range from material implications in a modal language [10, 11],
to inference rules in the metalanguage [19], or as metalinguistic conditional operators [12], or as
minimizing abnormality relations in incomplete theories [8], or as metalinguistic relation among set
of literals [7]. In this work we adopt this last style of formalization, being the expression o >— 3
a representation of a defeasible conditional or prima facie implication for representing that reasons
for accepting « provide reasons for tentatively accepting 3, and both a and [ are sets of open
literals in a deductively closed first order language.

a(t)

&(X) >— b(X) (1)
b(t\)?

that is, in words, if a(t) is a known or believed fact, and if among our accepted defeasible conditionals
we have a(X) >— b(X), then nonmonotonically infer b(t). We can also establish a defeasible
entailment relation |~ extending the existing deductive entailment relation b in a way such that
defeasible conditionals are used as material implication in the modus ponens inference rule.

824



2.2 Induction

Induction is aimed to find a general rule from a set of particular cases, instances or examples (1.
Stvles of formalizing induction are less diverse. since there is agreement in that induction infers an
abstraction. in a way such that every particular case can be regarded as an instance. The most
fundamental inference pattern for induction is to search in a svstematic way. A decidable inductive

inference rule in a first order language with a denumerable set of variables is

a,(h), a(tg), BRI ar(fn)
b(t1),b(ta). -, b(tn), -+ b(tnam) (2)
a(X) >— b(X),

that is. if in our knowledge base, every time that we find a(t). we can also find b(t), then infer the
defeasible conditional a(X) >— b(X).

2.3 Abduction

According to philosophers, abduction is a reasoning process that provides the best fit or explanation
for some unexpected data, that is, it goes from observations to ezplanations. Then, an abductive
inference produce sentences that, added to the theory 7, implyv deductively or nonmonotonicallv the
surprising observations. Obviously there may be many suitable explanations for a given fact. and
therefore there must exist criteria for assessing the “best” explanation, like coherence or simplicity
(see for example the discussion in [22] and the bibliography cited therein). Abduction is of central
importance in some Al areas, as in expert systems, diagnosis, and causal reasoning [5, 15]. A
suitable schema for representing an inductive inference is the following.

~ b(t) )

that is. if the surprising fact b(t) is observed, being b unpredicted in our theory T. and if a(X)
added to the theory would entail b(X), then infer a(t).

2.4 Plausible Reasoning

Plausible reasoning is a means to extend the domain of a theory incorporating information provided
by potentially fallible sources [20, 21]. Among these sources we may consider reports from other
agents. measurements. observations, guesses or conjectures. Following epistemological criteria,
these reports must refer to observable facts, i.e., ground literals, and a formal means to represent
them is to relate the informed literals to the source of information. Then, if the information
source i provides the ground literal a(t), this may be represented as < a(t) >;. This information is
considered as a prima facie truth, and so an inference pattern for representing plausible reasoning
1s
< a,(t) >,

a(t),

that is. if information source © provides the report that a(t), then infer a(t).
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3 An Epistemic Architecture

In this section we will present an epistemic architecture, established in terms of a specific reasoning
model. Knowledge is represented in a first order deductively closed language. We will refer to sets
of general (nonground) sentences with calligraphic uppercase (as KC), to sets of particular sentences
with italicized uppercase (as E), and to sentences with italicized lowercase (as a(X)). The language
is extended to allow the representation of tentative knowledge in the form of defeasible conditionals
a{X) >— b(X) an of plausible literals < >;. Then, the linguistic classes in which knowledge is
represented are

e IC, mathematical and logical truths and definitions, which are deductively valid, represented
as a set of universally closed sentences;

o G, defeasible knowledge represented as a set of defeasible conditionals that arose as an ab-
straction of a reasonably large set of examples;

e F evidence, is the set of available particular knowledge, which also is deductively valid, and
is represented as a set of ground literals;

e P, plausible information provided by information sources, represented as plausible ground
literals.

DEFINITION 1 Given a context < I, E >, (mathematical and logical knowledge and evidence),
an Epistemic Structure & is a knowledge structure £, , =< G, P >, where § is a finite set of
defeasible conditionals o >— (3, and P is a finite set of p]aﬁsib]e literals < I >;. Whenever context
remains inambiguously denoted, we will refer to an epistemnic structure simply as £. O

DEFINITION 2 Given an epistemic structure &,. . in context < K, E >, a Plausible Theory 7 is
apair T =< &, 5, <>, where < is a partial order on the elements of £, referred to as an Epistemic
Preference Relation or more simply, plausibility. We may consider that the deductively valid
knowledge of the context is an element £+ in the plausible theory. such that Vo € £.a=<E+, and that
any other knowledge piece, without epistewnic importance, is another element £ of the plausible
theory, such that V3 € £.£ <3. Then, in a plausible theory T , its epistemic structure £ is a lattice
under the epistemic importance relation <. O

DEFINITION 3 Given a plausible theory 7 and a subtheory T' C 7, the Epistemic Importance
of T' given T, denoted as T, is defined as the set of greatest lower bounds of the eleinents of T
under the relation < of epistemic importance: T« = {a € T| AG € T.f<«a}. Given two subtheories
Ty y To, we will say that T is epistemically more important than Ty (denoted as Tp<T7 ) ifff every
statement in Ty is at least as important in 7 as every statement in T, but there exists at least one
statement in T that is strictly more important than every statement in 7. O

Now, given a plausible theory 7", which is the consistent subset, of most epistemic importance, or
in other words, the most preferred subtheory? Since our epistemic importance relation is a partial
order, there can be two or more maximally plausible consistent subtheores (wrt the context), each
unrelated under epistemic importance. The semantics we propose here is to consider the intersection
of every such subtheories as indisputed knowledge.
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DEFINITION 4 Let ~ be an entailinent relation that extends the deductive entailie ut relation
using members of ‘an epistemic structures as premises. in particular, members of G as lilr,’ft’l'l;)]
implications and members of P as literals. Given a plausible theory T =< £ < > i) context
< K.E >. and a linear extension | of <!, a Max1mally Plausible Consistent Subtheory
(MPCS) of T (wrt context < IC. E' >) is a subset El of the epistemic structure £ that satisfies

1. & ce,

2. (E'uKkuP) ~ L,

3. Yae &ElvB e (E/EN.8=a,

4. BE'E CE CENEUK) P~ L

Let M Dbe the intersection of all MPCS of a given plausible theory, if we translate the defeasible
conditionals in M to material implications and the plausible reports to literals, then we obtain the
Skeptical Subtheory Ty of T (wrt the context < JC. E > and the epistemic importance relation
=< ). The skeptical subtheory of a plausible theory is within plain first order language. The set C

of conclusions of a plausible theory T, then, is the deductive closure of the skeptical subtheory

together with the context. i.e., C =Th({KUEUT,}). O

A proof procedure to determine if a given sentence is among the set of conclusions of a plausible
theory is the following;:

DEFINITION 5 Given a plausible theory 7 =< &, .. < > and a query q such that neither CUE + q
nor K UE F —q. Then we define:

(Support) ¢ is supported if there exists a support set £; C £. such that £, UK U El~ q.
(Doubt) q is doubted if there exists a doubt set £4 C £. such that £qU KU Ep —q.

(Accept) ¢ is accepted either if it is supported but not doubted, or if there exists a support
set £ such that the epistemic importance of £, is higher than those of any doubt

- set £4. that is, £E4<E5.

THEOREM 1 Given a plausible theory T =< &, .. < >, then q is accepted with support £, such
that 0 C £, C &, if and only if ¢ is in the set C' of conclusions of the theory. O

The procedure described in the definition 5, inspired in Wagner's skeptical reasoning [23], is
computationally tractable, since it is based in recursive backward chaining. Then, a PROLOG
implementation is straightforward.

4 Ampliative inference in the epistemic architecture

We will present in this section some examples of ampliative inference as they are represented within
the epistemic architecture presented in the previous section. To simplify notation in these examples,
we will adopt Geffner’s notation for defeasible rules: every conditional in G is indexed with a number
that represents it, in a way such that the conditional o — 3 may be represented as ;.

1A linear extension of a partial order 7 is a linear order relation I over the same elements of 7 that contains 7.
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4.1 Nonmonotonic and plausible reasoning

In the definition 4 of consequence of a plausible theory, and in its operational counterpart of
definition § of accepted query, there are implicit the nonmonotonic inference pattern 1, and the
plausible inference pattern 4. Then, our epistemic architecture performs a plausible reasoning
and a nonmonotonic reasoning based on preference among defeasible conditionals. It can be easily
shown that, disregarding or ignoring a preference relation among conditionals, the set of conclusions
coincides with the nonmonotonic logic of McDermott and Doyle [10] and of autoepistemic logic [11].
If we were to compute sets of conclusions from the deductive closure of every MPCS together with
the context, the result would be a set of mutually incompatible sets of conclusions that are identical
to multiple extensions of Reiter’s default reasoning [19]. However, the preference relation breaks
the duality of credulous wvs. skeptical reasoning.

EXAMPLE 1 Suppose in our plausible theory we have E = {a,=(c A d)}, § =
{a = b,b5 c,a 3 d} and < = {61<63,02<03}. In this case we can show from the definitions
that d is among the conclusions of the theory, since {63} gives support to d and is epistemically
stronger than the doubt set {61,62}. O

It is important to remark that in the example, neither b nor —b are conclusions of the plausible
theory, since the support set for b, 61, is not comparable to its doubt set {82, 63} (and the same
goes for =b. If in < we add 69<671, then b would also be conclusion. On the other hand, if §; < 69,
was added, then —b would be conclusion. This behavior is not observed in other ranking based
default reasoning systems like prioritized circumscription [9, 17]. At the same time, it is easy to
show that this reasoning model avoids deadlocks and cascaded ambiguity traps that are common
in inheritance networks.

EXAMPLE 2 Cascaded Ambiguities (Horty et. al., 1987) [4]. Knowledge about political atti-
tudes can be represented in the following stateinents:

Republicans are not pacifists r - —p

Quakers are pacifists c5p
Republicans are football fans r - [f
Football fans are belicists -0
Pacifists are not belicists p 7 b
Nixon is Republican T

Nixon is Quaker q

What can be concluded about Nixon’s belicisn? In particular, we have the following reasoning
lines: {69,065} UICUE}~ =b, {61,065} UK UER b, and {63,064} UK U Ep b. The accepted conclusion
will depend, then. on the preference among the sets {{62, 85}, {61,085}, {63,04}}. O

4.2 Inductive reasoning

On producing a new defeasible conditional within our epistemic architecture, we are confronted
with the problem of assigning it a suitable epistemic importance. This was already discussed in
Philosophy of Science as the “problem of induction” (see [16], for example) in search of statistical
criteria for the confirmation of scientific theories. These criteria were found inadequate for confir-
mation [6], but we claim that they can be applied to the assessment of epistemic importance. For
instance, in the inductive inference schema 2, the number n of regular cases remains indeterminate.
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Space considerations do not allow an adequate discussion of this issue, but we can briefly state that
the number n of regular cases can be related to the epistemic importance of the inferred conditional.
a higher n meaning the conditional is closer to £7.

EXAMPLE 3 We consider our knowledge about nourishment habits and religiousness of some of
our friends, in particular. about vegetarianism v and Buddhisin b:

E = {b(john),blana). v(john).v(ana),v(pat)}.

In addition. we accept that Buddhism is the majority religion in India:

g = {(i(X) >— b(X)}.

What can be conclude about the nourishinent habits of our new friend trilok, born in India? By
induction in E. we can pose the defeasible conditional b(X) >— v(X), which can be chained with
i(X) >— b(X) to cousistently conclude v(trilok). O

4.3 Abductive reasoning

As in induction, in abduction we do not infer a conclusion. but instead we infer the necessary
base for arriving to an observed conclusion. Therefore, we also face the problem of assessing an
epistemic importance to the inferred explanation. This problem was also studied in confirmation
theorv, mostly on probabilistic grounds. But there is another problem, namely the existence of
more than one putative explanations, inferred by abduction. from which the most adequate should
be chosen. Again. space considerations do not allow for an adequate discussion of this issue, but we
can briefly state that the epistemic importance may not alwavs be an adequate measure (as stated
by Boutilier and Becher [2]. good explanations are not necessarilv good implications).

EXAMPLE 4 In an expert system for occupational diagnosis. we find that a normal einployed pei-
son earns a wage e(X) T w(X). pays taxes e(X) - #(X). and does not study e(X) 5 —3(X);

1 2

a normal student also is employed s(X) o e(X); and that a student that won a fellowship

F(X) 7 e(X). earns a wage f(X) 5 w(X). We regard 63 v b3 as more immportant than 61, that
is. wages and taxes are more ‘normal” facts about working people than studying. With respect to
students, we regard 65 v 8¢ as more important than é4. that is, it is more established that fellows
are students and that earn a wage. than that students work. Finally, we regard 64 as of more im-
portance than 61. that is. it is more “norinal” that working people do not study than that students

work.< = {64'<55. b4=06g.01 <09, 061<63, 54%51}.

In this state of affairs. what can we say about john. about whom we know that he pays taxes?

By abductive infereunce. from t(john) we can conclude that e(john) without contradiction, and
since 64<81, we can conclude also —s(john).

What about ana. about whom we know that earns a wage?

In condition w(ana), we can find by abductive inference two justifications, namely e(ana)
and f(ana). Following the first justification, we find also that t(ana) and —s(ana) and therefore
- f(ana), that is. ana earns a wages because she is employed, and therefore she pays taxes, does
not study is not fellow. Following the second justification we find that s(ana) and also that
w(ana) and t(ana), that is, ana is a fellow and therefore she studies, but also ana is employed and
pays taxes. Since our epistemic structure is skeptical, we conclude that an abductive explanation is
accepted only if it belongs to every possible justification, being indeterminate if there is no cominon
justification. In the case of ana. the system accepts that she is employed as a justification of her
wages, and therefore predicts that she pays taxes, a fact to be corroborated.

What about peter. about whom we know that he earns a wage but does not pay taxes”
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In this case, the explanations for peter’s wages are identical to ana’s, but the additional fact that
peter does not pay taxes “blocks” the first explanation, and then the only consistent explanation
is that peter is a fellow that studies but does not work. O

5 Applications in Scientific Reasoning

The relations between KR&R and Philosophy of Science are subtle and have not been fully uncov-
ered. Here we propose an application of our epistemic architecture to the formalization of scientific
reasoning. Scientific theories are aimed to find the least knowledge set (or hypotheses) H that ad-
equately represents or covers the evidence set E of a given domain. Early attempts in the Vienna
Circle proposed a schema E F H in which the theory follows from the evidence. It was Hempel the
first to show that the hypotheses, as underlying explanations for the evidence, should entail the
observations, i.e., H - E (hypothetico-deductive paradigm) [3]. Popper then showed that scientific
theories cannot be shown to be true, confirmations notwithstanding, but a single counterexample
may render them false [16]. A further contribution was made by Lakatos, who analyzed the most
relevant historical cases, and showed that underlying inference procedures in scientific reasoning
are of a more pragmatic nature, and tend to “protect” theories from reputations by means of a
“belt” of ancillary hypotheses [6]. We will elaborate on Lakatosian ideas later.

EXAMPLE 5 Our knowledge about gravitation is reduced to:
Hy: There is a force that attracts massive objets to earth.
VX.0(X)= a(earth, X)
e1:  This stone is attracted to the earth.
a(earth, stone)
eo:  This zeppelin is not attracted to the earth.
—a(earth, zepp)

In a Hempelian account, we have Hi & ey, but Hy tf e5. This should render false Hy. In this
work we propose to regard scientific knowledge as defeasible, and then our account for reasoning
with plausible theories should be adequate in scientific reasoning.

Hy: Massive objets tend to fall to earth.
o(X) >— a(earth, X)

e1:  This stone is attracted to the earth.
a(earth, stone)

ey:  This zeppelin is not attracted to the earth.
—a(earth, zepp)

Here e; is explained, but ey is an exception of unknown nature. Further experi-

ments tend to confirm Archimedes and Torricelli’s hypothesis of an atmospheric influence.
Hy: Objects heavier than air fall to earth.
o(X) AN h(X) >— a(earth, X)
Hy: Objects lighter than air do not fall to earth.
o(X) A =p(X) >— —a(earth, X)
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This stone is heavier than air.

S
h{stone]

co:  This zeppelin is lighter than air.
—h(zepp)

e1: This stone is attracted to the earth.
alearth, stone)

eo:  This zeppelin is not attracted to the earth.
—a(earth, zepp)

[

This tov example shows an underlying common drive in most scientific communities, namely
to avoid the relinquishment of an otherwise fruitful theory when confronted to counterexamples,
at least, whenever there are no other competing theories that seems to do better. There need
not be a single method in scientific reasoning, and that there can be different communities of
researchers in a field. each adopting different methodological practices. Lakatos dubbed the term
scientific research programmes to refer to such that association of theory plus methodology. Our
contribution to the Lakatosian epistemology is to consider that research programmes emerge simply
from giving different epistemic importance to the same knowledge pieces, that is, competing research
programmes can be regarded as plausible theories in which the epistemic structure is common, but
the epistemic importance relation is different.

EXAMPLE 6 Let a scientific theory be T = {a,a >— b}. This theory predicts b. What happenus
if there is evidence that —b is the case? In this situation we can consider several cases.

I the first. it is created a theory T1 = {a,b,a >— b}, where tacitly {a<-b,a<(a >—b)}.
Following T 1, the culprit for defeat is a, which is not adequately justified, but a >— b can be safely
preserved, and. even 1ore. creates the abductive presupposition that —a should be the case.

In the second case. it is created a theory T9 = {a,—b,a >— b}, with a tacit preference
{a=<=b, (a >— b)<a}. Following T . the culprit is a >— b which is rendered false by the evidence,
but the datum a can be preserved.

There can be other cases. which can be the most interesting, where auxiliary hypotheses are
generated to protect the original theory from defeat, evolving to a theory 73 = {a.c.~b,a >— b},
where {(a,c) >— —b}. Following 73, the rule a >— b is incomplete. and must be specialized to con-
sider further cases, for example (a,c) >— —b completes the rule when the particular circumstance
¢ is observed. O

6 Conclusion

We proposed an epistemic architecture that allows a full representation of ampliative inference
patterns in an integrated framework. An epistemic structure incorporates knowledge of different
kinds: a context. a set of defeasible rules or conditionals, and a set of tentative information. An
epistemic importance relation assigns priorities to every knowledge piece. Conclusions inferred
bv means of an ampliative inference rule can be represented within the epistemic structure with
its corresponding epistemic importance. The semantics of the system is to regard as definite
the conclusions that pertain to the intersection of the maximally plausible consistent subsets. A
computationally tractable proof procedure was also presented. Then we showed how relevant
patterns of ampliative inference can be represented in our architecture. Finally, some aplications
in Philosophy of Science were discussed.
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